$=\cos x, \frac{\pi}{2} \leq x \leq \pi$.

If $\mathrm{f}(\mathrm{x})$ is continuous in the interval $-\pi \leq x \leq \pi$ find the values of a and b.

Group - D

4. Answer any three questions :
(1) (a) Define Scalar matrix.
(b) Solve by matrix inversion method the following system of equation : $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=2, \mathrm{x}+3 \mathrm{y}-\mathrm{z}=5,3 \mathrm{x}$ $+\mathrm{y}-2 \mathrm{z}=6$.
(2) (a) Define Identity Matrix.
(b) Show that $\left|\begin{array}{ccc}1 & a & a 2 \\ a 2 & 1 & a \\ a & a 2 & 1\end{array}\right|=\left(a^{3}-1\right)^{2}$.

BBA 1st Semester (Honours) Examination-2022-23 BACHELOR OF BUSINESS ADMINISTRATION
 ```Course ID : 13212 Course Code : BBA/CC-02 \\ Course Title : Business Mathematics \\ (New Syllabus)```

Time : 3 Hours

Full Marks : 80
The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer all questions:
$1 \times 10=10$
(i) If the matrix A is both Symmetric and SkewSymmetric then-
(a) A is a zero matrix
(b) A is a diagonal matrix
(c) A is a scalar matrix
(d) A is a square matrix
(e) None of these
(ii) If $A=\left(\begin{array}{ll}0 & 7 \\ 0 & 0\end{array}\right)$ and $f(x)=1+x+x^{2}+x^{3}+\cdots-\cdots+x^{20}$ then $f(A)=$
(a) 0
(b) $\left(\begin{array}{ll}1 & 7 \\ 0 & 0\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 7 \\ 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 7 \\ 1 & 1\end{array}\right)$
(e) None of these.
(iii) The Solution of the equation $\left|\begin{array}{cccc}x+1 & 3 & 5 \\ 2 & x+2 & 5 \\ 2 & 3 & x+4\end{array}\right|=0$ is given by
(a) $x=1$
(b) $x=2$
(c) $\mathrm{x}=3$
(d) $x=4$
(e) None of these
(iv) If $f(x+3)=2 x^{2}-3 x+1$, find $f(x+1)$
(a) $2 x^{2}-11 x+15$
(b) $\mathrm{x}^{2}-11 \mathrm{x}-15$
(c) $2 \mathrm{x}^{2}+11 \mathrm{x}+15$
(d) $x^{2}+11 x-15$
(e) None of these
(j) Determine the ratio in which the line $3 x+y-9=$ 0 divides the segment joining the points $(1,3)$ and $(2,7)$.
(k) Evaluate : $\lim _{x \rightarrow \pi}\left(\frac{\sin x}{\pi-x}\right)$
(1) If $f(x)=m x+c$ and $f(0)=f^{\prime}(0)=1$. What is $f(2)$?
(m) Determine the rank of a matrix $\left[\begin{array}{ccc}1 & 0 & 3 \\ 4 & -1 & 5 \\ 2 & 0 & 6\end{array}\right]$ is $=$
(n) Is $f(x)=|x|$ continuous at $x=0$?
(o) If $\frac{\log x}{y-z}=\frac{\log y}{z-x}=\frac{\log z}{x-y}$ then prove that $\mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}} \cdot \mathrm{z}^{z}=1$
(v) Find the equation whose roots are $1,-2$
(a) $\mathrm{x}^{2}+\mathrm{x}-2=0$
(b) $\mathrm{x}^{2}-\mathrm{x}+2=0$
(c) $\mathrm{x}^{2}-\mathrm{x}-2=0$
(d) $\mathrm{x}^{2}+\mathrm{x}+2=0$
(e) None of these.
(vi) $\mathrm{f}(\mathrm{x})=\left(\frac{\sin a x}{x}\right), x \neq 0$ and $\mathrm{f}(0)=\mathrm{k}$, Find the value of k for which $f(x)$ is continuous at $x=0$
(a) 0
(b) 1
(c) -a
(d) a
(e) None of these
(vii) Find $\frac{d y}{d x}$ when $\mathrm{x}=a \mathrm{t}^{2}, \mathrm{y}=2 \mathrm{at}$
(a) $\frac{1}{t}$
(b) $-\frac{1}{t}$
(c) t
(d) -t
(e) None of these
(viii) $\int \frac{d x}{1+\sin x}=$
(a) $\tan x$
(b) $\sec x$
(c) $\tan x+\sec x$
(e) None of these
(a) 5
(b) 4
(c) -5
(d) -4
(d) $\tan x-\sec x$
(ix) The distance between the points $(0,0)$ and $(3,-4)$ is
(e) None of these
(x) In how many ways can 6 persons stand in a queue?
(a) 520
(b) 720
(c) 620
(d) 600
(e) None of these

Group - B

2. Answer any ten question :
(a) Find the values of x and y, if $2\left(\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right)+\left(\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right)$
(b) If $f(x)=x+|x|$, find $f(3)$ and $f(-3)$.
(6) (a) The sum of the first four terms of an A.P. is 56.The sum of the last four terms is 112 . If its first term is 11 , then find the number of terms.
(b) The first term of a G.P. is 1 .The sum of the third and fifth term is 90 . Find the common ratio of the G.P.

(4) (a) Define Logarithm.
(b) If $\log _{\mathrm{a}} \mathrm{bc}=\mathrm{x}, \log _{\mathrm{b}} \mathrm{ca}=\mathrm{y}$ and $\log _{\mathrm{c}} \mathrm{ab}=\mathrm{z}$ then prove
that $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1$.
(5) (a) In how many ways can 5 girls and 3 boys be seated in a row so that no two boys are together?
(b) How many three digit odd numbers can be formed by Using the digits $1,2,3,4,5,6$ if:(i) the repetition of digits is not allowed? (ii) the repetition of digits is allowed?
(3) (a) Define Limit. Distinction between $\lim _{x \rightarrow a} f(x)$ and $f(a)$.
(b) $\int \frac{d x}{5+4 \cos x}$.
