B.Sc. 1st Semester (Honours) Examination-2022-23PHYSICS
Course ID : 12411 Course Code : SH/PHS/101/C-1
Course Title : Mathematical Physics-I (New)
Time : 1 Hour 15 Minutes Full Marks : 25The figures in the right hand margin indicate full marks.Candidates are required to give their answers in theirown words as far as practicable.
Unit-I

1. Answer any five questions : $1 \times 5=5$
(a) \vec{F} is a constant vector and \vec{r} is the position vector then $\nabla(\vec{F} \cdot \vec{r})=$?
(b) A force given by $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is applied at the point $(1,-1,2)$. Find the moment of force \vec{F} about the point $(2,-3,1)$.
(c) $\varphi=2 e^{2 x+y-z}$, Find $\vec{\nabla} \varphi$.
(d) Write down expression of elementary volume in spherical polar coordinate.
(e) If \vec{A} is conservative, Evaluate $\oint \vec{A} \cdot \overrightarrow{d r}$.
(f) State the divergence theorem.
(g) Express the point $\mathrm{P}(1,-4,-3)$ in cylindrical coordinates.
(h) Find $\Gamma(-3 \cdot 5)$.

Unit-II

2. Answer any two questions :
(a) Prove that $\int_{0}^{\pi}\left[p_{t}(\cos \theta)\right]^{2} \sin \theta d \theta=\frac{2}{2 l+1}$.
(b) Let $f(x, t)$ be the solution of heat equation $\frac{\partial f}{\partial t}=D \frac{\partial^{2} f}{\partial x^{2}}$ in one dimension. The initial condition at $t=0$ is

$$
\begin{aligned}
& f(x, 0)=e^{-x^{2}} \text { for }-\infty<x<\infty . \text { Then for all } t>0 \text { find } f(x . t) . \\
& {\left[\text { Given } \int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}\right] .}
\end{aligned}
$$

(c) Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-y=\mathrm{x} \sin x+\left(1+x^{2}\right) e^{x}
$$

(d) $i=\begin{aligned} & I_{0} \sin x \text { for } 0 \leq x \leq \pi \\ & 0 \text { for } 0 \leq x \leq 2 \pi\end{aligned}$

Express i as a Fourier series.

Unit-III

3. Answer any one question :
$10 \times 1=10$
(a) (i) Show that

$$
\vec{F}=\left(y^{2} \cos x+z^{3}\right) \hat{i}+(2 y \sin x-4) \hat{j}+\left(3 x z^{2}+2\right) \hat{k}
$$

is a conservative force field.
(ii) Find the scalar potential for \vec{F}.
(iii) Find the work done in moving an object in this field from $(0,1,-1)$ to $\left(\frac{\pi}{2},-1,2\right)$.
(iv) Evaluate $\iint \vec{A} \cdot \hat{n} d S$, where $\vec{A}=z \hat{i}+x \hat{j}-3 y^{2} z \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
(b) (i) Prove that $\int_{0}^{\pi / 2} \sqrt{\operatorname{Cot} \theta} d \theta=\frac{1}{2} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)$
(ii) Using method of separation of variables find the solution of $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$; with the boundary condition $\mathrm{U}(0, y)=8 e^{-3 y}$. $5+5$

