4. Answer any one of the following questions : $6 \times 1=6$
(a) Evaluate the given integral using Residue Theorem :
$I=\oint_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$, where C is a circle with
radius $|z|=\frac{3}{2}$.
(b) Show by contour integration method that:

$$
\int_{0}^{\infty} \frac{\cos m x}{x^{2}+1} d x=\frac{\pi}{2} e^{-m}
$$

(c) Calculate the value of the integral in complex region :
$I=\int_{1-i}^{2+i}(2 x+i y+1) d z$, along the straight line joining the points ($1-\mathrm{i}$) and ($2+\mathrm{i}$).

B.Sc. 1st Semester (Honours) Examination-2022-23

ELECTRONICS

Course ID : 11712 Course Code : SH/ELC/102/C-2T

Course Title : Mathematics Foundation of Electronics (New)

Time : 1 Hour 15 Minutes

Full Marks : 25
The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any three of the following questions : $1 \times 3=3$
(a) What is the order and degree of the given differential equation?

$$
y=x\left(\frac{d y}{d x}\right)+x /\left(\frac{d y}{d x}\right)
$$

(b) Give one example of partial differential equation.
(c) What is 'singular point' and 'ordinary point' in case of a second-order, homogenous, ordinary or total differential equation with variable co-efficient?
(d) What is solenoidal vector?
(e) Write down C-R equation in polar form (co-ordinate).
(f) Write down the relation between gamma function and beta function.
2. Answer any three of the following questions : $2 \times 3=6$
(a) What is an analytic function?
(b) Prove that $\Gamma(n+1)=n \Gamma(n)=n$!
(c) When a vector is said to be irrotational? Give its physical interpretation.
(d) State Residue Theorem and explain it.
(e) Prove that $(\vec{A} \times \vec{B}) \cdot(\vec{A} \times \vec{B})=(A B)^{2}-(A \cdot B)^{2}$.
(f) If $f(z)=\frac{4+3 z}{z(z-1)(z-2)^{2}}$, then find the location of the various poles.
3. Answer any two of the following questions : $5 \times 2=10$
(a) Find the diagonal form of the given matrix :

$$
A=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

(b) Construct the recurrence relation by solving given differential equation by Frobenious power series method :

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

(c) Find the Eigen values and Eigen vectors of the matrix $\left(\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right)$.
(d) Find the value $\Gamma\left(\frac{1}{2}\right)$ and hence plot the graph of gamma function for $n=-\infty$ to $+\infty$ i.e., for the whole space.

