B.Sc. 1st Semester (Honours) Examination-2022-23

ELECTRONICS

Course ID : 11711 Course Code : SH/ELC/101/C-1T
Course Title : Basic Circuit Theory and Network Analysis (New)

Time : 1 Hour 15 Minutes Full Marks : 25

The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any three of the following questions : $1 \times 3=3$
(a) What is equivalent capacitance between terminals A and B of the following network?

(b) What is the value of the electrical resistance of the resistor with colour rings as follows :
green, blue, yellow and silver.
(c) A sine wave has a frequency of 50 kHz . How many cycles does it complete in 20 msec ?
(d) What do you mean by 'electric circuit' and 'electric network'?
(e) Mention two limitations of Ohm's law.
(f) What do you mean by 'linear' and 'non-linear' circuit elements? Give examples.
2. Answer any three of the following questions : $2 \times 3=6$
(a) What is the source transformation? Show how a voltage source can be converted into a current source and vice-versa.
(b) The current and voltage through a certain element is given by $v=100 \sin \left(314 t+45^{\circ}\right)$ and $i=10 \sin$ $\left(314 t+315^{\circ}\right)$. Identify the circuit element and find its value.
(c) Define frequency, instantaneous value, effective value and average value for a sinusoidal signal. Find RMS and average value of the given waveform.
$2+2+2$

4. Answer any one question :

$6 \times 1=6$
(a) State Superposition theorem for a dc network. Find the current through 10Ω resistor using this theorem.

(b) Find Y parameters for the network shown below. Hence, determine whether the network is symmetrical or reciprocal.

(b) If the current flowing through R is $3 A$, find the value of R using i) KVL and ii) KCL. $2 \frac{1}{2}+2 \frac{1}{2}$

(c) What are dependent sources? Find the voltage across 5Ω resistor in the network shown below.

(d) What is a 'supernode'? Using the concept, find the current through 5Ω resistor shown in figure below.

