(f) A production function is given as follows : $Q=A K^{\alpha} L^{\beta}$, where A is a positive constant, Q, K and L represent output, capital and labour respectively and α, β are. positive fractions with $\alpha+\beta<1$. (i) Prove that the function is homogeneous with decreasing returns to scale. (ii) Find out the output elasticity with respect to labour.

Unit-III

3. Answer any one question:
$10 \times 1=10$
(a) If marginal revenue $(M R)=16-\mathrm{X}^{2}$, find the quantity level where the total revenue will be maximum. Also find the total and average revenue and demand curves. $4+4+2$
(b) Given the utility function $U=4 x y-y^{2}$, and, the budget equation, $2 \mathrm{x}+\mathrm{y}=6$, where, ' U ' denotes utility, x and y denote the consumption levels of two commodities, (i) write down the Lagrangian function for utility maximisation, mentioning the Lagrange multiplier. (ii) Find the optimal level of purchase of x and y. (iii) Check the sufficient condition with the help of Bordered Hessian determinant. 2+5+3

$$
2+5+3
$$

B.Sc. 1st Semester (Honours) Examination-2022-23 ECONOMICS

Course ID : 11612 Course Code : UG/ECO/102/C-2
 Course Title : Mathematical Methods in Economics-I (New)

Time : 2 Hours
Full Marks : 40
The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Unit-I

1. Answer any five questions : $2 \times 5=10$
(a) Explain the concept of universal set with a suitable example.
(b) If a consumption function is represented by $\mathrm{C}=500+0.25 \mathrm{Y}$, Where C and Y represent aggregate consumption and aggregate income respectively, Find the saving function.
(c) Given the sets $S 1=(2,4,6), S 2=(7,2,6)$ and $S 3=(4,2)$.

Find (i) $S 1 \cup S 2 \cup S 3$ and (ii) $S 1 \cap S 2 \cap S 3$
(d) Given $A R=60-3 Q$ Find $T R$ and MR functions.
(e) Find the common difference of $\sqrt{12}, \sqrt{27}, \sqrt{48}$.
(f) Find the sum of all integers between 100 and 1000 which are divisible by 9.
(g) In a market the demand and supply functions are given as follows :
$D=30-40 P ; S=21+5$ P. Find out the equilibrium price.
(h) Give one example, each of decreasing function and constant function from economic theory.

Unit-II

2. Answer any four questions : $5 \times 4=20$
(a) Use Cramer's rule and solve the following National Income Model : $\mathrm{Y}=\mathrm{C}+\mathrm{Io}+\mathrm{Go}$; $\mathrm{C}=\mathrm{a}+\mathrm{bY}$, where, Y and C represent levels of national income and aggregate consumption expenditure and Io and Go represent autonomous investment and government expenditure.
(b) Given the demand function $\mathrm{Q}=700-2 \mathrm{P}+0.02 \mathrm{Y}$, where, price $\mathrm{P}=25$ and income $\mathrm{Y}=5000$, find the income elasticity of demand. State whether the commodity is normal or inferior.
(c) The demand curve is $\mathrm{P}=20-3 \mathrm{Q}$; find the consumer surplus at $P_{0}=8$ and explain it graphically.
(d) Find out the relationship between average revenue (AR), marginal revenue (MR) and Price elasticity of demand (e). What will be the value of MR at $|e|=1$?
(e) Given the average cost function, $A C=Q^{2}-5 Q+60$, (i) find out the output level where AC is minimum.
(ii) find out the MC function.
